

Computer Vision & Multimedia Lab

University of Pavia Industrial Engineering and Computer Science Department

o Informatica e Sistemistica

Staff

- Virginio Cantoni, Professor Director
- Luca Lombardi, Associate Professor
- Mauro Mosconi, Assistant Professor (part-time)
- Marco Porta, Assistant Professor
- Marco Piastra, Contract Professor
- Roberto Marmo, Contract Professor
- Alessandra Setti, System Administrator

History – the beginnings

- The initial research activities of the group (early 70s) concentrated on the techniques of image enhancement and restoration, with particular regard for medical imagery
- Later, a broad background has been acquired on low level and intermediate level vision
- From the early 80s a new stream of research has been actively followed in the field of parallel architectures for vision and image processing

Current research areas

S

- New research areas are now activated on:
 - Pattern Recognition in Proteomics,
 - Human-Computer Interaction,
 - 3D Vision,
 - Multimedia,
 - E-learning,
 - Image Synthesis,
 - Visual Languages,
 - Pyramidal Architectures for Computer Vision

Vision-based perceptive interfaces

- **Exploiting vision** to implement user interfaces based on **gesture recognition** and **head tracking**
 - ordinary webcams
 - TOF cameras
 - Microsoft Kinect

Vision-based perceptive interfaces

Examples: hand gestures

Page scrolling

GEM: Gesture Enhanced Mouse

Human Computer Interaction

- "Traditional" activity: design of visual interfaces (i.e. drag-and-drop for e-commerce websites, new paradigms for browsing of images)
- Experience on web accessibility
- Experience on usability evaluation (cognitive walkthrough, thinking aloud)

Eye Tracking

- The Tobii 1750 Eye Tracker is integrated into a 17" TFT monitor.
 It is useful for all forms of eye tracking studies with stimuli that can be presented on a screen, such as websites, slideshows, videos and text
- The eye tracker is non-intrusive.
 Test subjects are allowed to move freely in front of the device

Application areas

 usability and advertising testing

what people watch reflects their thinking and cognitive processes – insights that cannot be obtained directly with other testing methods

eye control for accessibility

eye control enables users with special needs to communicate and interact using only their eyes

Advanced techniques for large image database browsing Eye-controlled **RSVP** (Rapid Serial Visual Presentation)

Eye-based communication **Eye-S**, a system for pure eye-based communication

the user creates alphabet letters, as well as punctuation marks and commands definable according to the specific application to control, by means of sequences of fixations on nine predefined (and invisible) screen areas

E.g.

"Intelligent" e-learning systems

e5Learning: enhanced exploitation of eyes for effective eLearning

three main functionalities:

- detection of basic user activities, such as reading text and observing multimedia content
- contextual content generation
- recognition of stress, high workload and tiredness states in the user

Soft biometry techniques

Are there any differences in the way specific kinds of images (e.g. faces) are watched by specific subjects?

- Put virtual and real objects into a 3D computer generated space
- Problem: control control the occlusions between actors and virtual elements

Vision – Video Surveillance

Applications: outdoor, urban traffic, measurement of speed of cars

Vision – Object Recognition

• Real time analysis

Road sign recognition, Railway sign detection

• Applications: intelligent vehicle, visual support to drivers

In the way of GHT (simplified 2D representation)

 α -helices and β -strands

Query protein

Mapping rule

In the way of GHT (simplified 2D representation)

 α -helices and β -strands

Query protein

Mapping rule

Votes Space

DVMLab

• Search for structural motifs by the Hough Transform

Protein-ligand interaction

Vision – Object Recognition

Explorative screening systems for histologic preparates images

QCT/FEA Models of Proximal Femurs: Image-based Mesh Generation

Episode III : 2011-12-05

A joint effort with Mayo Clinic and STMicroelectronics

Image Pre-Processing

Original

Dilation + Erosion

Gaussian Smoothing

Results

What's New in Episode III (2011-12-05)

		Test Set					
Data Set	SES (voxe ls)	Hausdorff Distance	Christina	lan	Rachel	Viorel	Vishwas
2675L_OSTEOPOROTIC	27	min	0.000083	0.000008	0.000033	0.000004	0.000043
		max	4.324452	4.389863	5.204681	4.679758	4.324683
		mean	0.207373	0.212788	0.388494	0.203164	0.228532
		RMS	0.302847	0.340244	0.513313	0.325063	0.347568
3075R_OSTEOPOROTIC	21	min	0.000005	0.000033	0.000017	0.000003	0.000017
		max	3.431049	3.556161	3.447876	3.972922	3.305173
		mean	0.210947	0.218107	0.228353	0.221990	0.205873
		RMS	0.304615	0.294806	0.336898	0.336424	0.284227
3082R_NORMAL	11	min	0.000000	0.000015	0.000026	0.000015	0.000019
		max	1.653172	2.164078	2.157052	2.893867	2.837292
		mean	0.187067	0.203129	0.205705	0.211246	0.191417
		RMS	0.224435	0.240362	0.246189	0.272521	0.235769
3086L_OSTEOPENIC	17	min	0.000033	0.000015	0.000007	0.000047	0.000005
		max	2.476942	2.343065	2.384681	2.537388	2.344930
		mean	0.193372	0.332697	0.194768	0.192596	0.181760
		RMS	0.264863	0.405104	0.246869	0.274163	0.245572
32471L_OSTEOPENIC	19	min	0.000028	0.000025	0.000016	0.000011	0.000012
		max	2.985517	3.311095	3.283424	3.212310	3.078978
		mean	0.175558	0.190040	0.192348	0.180661	0.175404
		RMS	0.226875	0.242556	0.252586	0.245195	0.226122
49545L_NORMAL	19	min	0.000023	0.000017	0.000008	0.000002	0.000008
		max	2.647166	2.849197	3.222083	3.377649	2.504953
		mean	0.217975	0.252744	0.265175	0.237507	0.226623
		RMS	0.281108	0.353121	0.362309	0.354369	0.296675
57050L_OSTEOPOROTIC	21	min	0.000056	0.000008	0.000020	0.000021	0.000057
		max	3.192670	3.334923	3.448210	3.658764	3.100749
		mean	0.273015	0.260918	0.277172	0.265849	0.257542
		RMS	0.376943	0.345752	0.368883	0.389208	0.350470
902514R_NORMAL	9	min	0.000055	0.000007	0.000006	0.000004	0.000011
		max	1.506914	1.782926	1.748946	1.922011	1.564114
		mean	0.160309	0.183127	0.182712	0.163791	0.160182
		RMS	0.187380	0.214271	0.216817	0.193727	0.186413
902893R_OSTEOPENIC	17	min	0.000006	0.000070	0.000006	0.000012	0.000012
		max	2.227875	3.701558	2.379014	2.365911	2.314178
		mean	0.185084	0.254320	0.189767	0.188475	0.182469
		RMS	0.259320	0.401195	0.261496	0.255980	0.259410

Data fusion segmentation

- Our approach uses these data sources:
 - A standard RGB camera
 - A TOF camera
- Possible applications:
 - People Tracking
 - Human Machine Interaction (HCI)
 - 3D reconstruction
 - Augmented reality
 - Etc.

Time-of-Flight Cameras

- New kind of sensors which allow for depth measurements using a single device with no mechanical parts
- Use laser light in near infrared to measure distances between the camera and the objects in the scene
- Why to use TOF cameras:
 - Direct measure of the distance without additional computation
 - Can work at real-time
 - No need of external illumination
 - Can measure distance with any kind of background
 - No interaction with artificial illumination

Cameras Specifications

SwissRanger™ SR3000

Moduled light ToF camera 55 active leds that emits in near infrared spectrum (~850nm) at 20 Mhz Max range without ambiguities: 7.5m Field of view 47.5 x 39.6 degrees Can reach 18-20 fps at QCIF resolution (176x144 pixels)

Supply two image per frames:

Distance Map

Intensity Map

Logitech HD Pro Webcam C910

RGB HD Camera

Max resolution 1080p, sets for the experiments at 640x480 pixels

Max frame rate 30fps, set to 18fps to syncronize with SR3000 speed

RGB

ToF based Segmentation

- Two main phases:
 - 1. A *thresholding* of the distance map based on the correspondent values of intensity map
 - 2. A region growing on the filtered intensity map: seeds planted in the peak of intensity map
- No learning phase
- No a priori knowledge of the background
- Shape of the objects does not influence the result

Intensity Map Depth Map SR3000 Input

Filtered Depth Map

Region Growing

Segmentation Result

2:

Hand detection as an example

- The foreground segmentation significantly reduce the interest area
- Sub-segmentation is achieved filtering the found cluster with color data (converted in HSV) :

 $W = \{ y: -10^{\circ} < H_v < 10^{\circ}, S_v > TH_s, V_v > TH_v \}$

- An initialization phase is use to set the min and max distance threshold δ_{min} and δ_{max} useful for excluding the head and clothes with skin like color
- New region growing formula:

 $\{x \in C, S(x, y) \le \theta, I_y \in L, y \in W, \delta_{min} \le D_y \le \delta_{max}\} \rightarrow \{y \in C\}$

- Procedure totally automatic based only on chromatic charateristics of the image
- Totally indipendent by the shape or by the position of the hand

Interaction with 3D objects

- Two type of movements:
 - Translation triggered when the hands are not alligned or there is only one hand (a cross mark the active cluster)
 - Rotation triggered when the hands are alligned (two squares mark the hand: blue for Y-axis controller; yellow for X-axis controller)
- Gesture recognition based only on geometrical constraints (no need of a learning phase):
 - Translation direct mapping of the hand coordinate to object coordinate
 - Rotation achieved analyzing the moment of inertia of the hand/s

Gestures and correspondent object movement